

Orbiting Wide-angle Lightcollectors (OWL)

Structural Analysis
Jeff Bolognese

18 January 2002

Analysis Outline

p2

- Components Analyzed
- Assumptions
- Analysis Results
- Issues and Future Analyses

Components Analyzed

Instrument Synthesis of Analysis Laboratory

- Models of the following components were constructed and analyzed:
 - Corrector Plate
 - Effectiveness of domed design
 - 10 G gravity loading
 - Fixed base dynamics

- Fixed base dynamics
- 15 G stresses

- Detector plate support struts
 - Fixed base dynamics
 - Buckling

Modeling Assumptions

Instrument Synthesis and Analysis Laboratory

- Models were constructed in NASTRAN
 - Built using PATRAN software
 - Models in English units
- Assumptions for specific components
 - Corrector Plate
 - Material Fused silica
 - Varying thickness from 13mm at edge to 3mm at center
 - 3000 mm diameter with 100 mm dome peak
 - Mirror Segment
 - Materials M55J composite face sheets (.06") with 2" thick light-weight aluminum honeycomb core (2.1 lbs/ft³)
 - 3 point mount to bracket

18 January 2002

Modeling Assumptions (Cont.)

- Mirror Bracket
 - Materials M55J composite structure with Ti flexure blades at adjustment points
 - Truss structure with I beam cross section segments
- Focal Plane Support Tubes
 - Material M55J composite
 - Circular cross section tubes (6.0" outer diam., and .08" thick walls)
 - Support 1000 lbs (455 Kg)
 - Represented as rigid, lumped mass

Analysis Results

- Corrector Plate
 - Doming makes all the difference
 - FF for domed=83 Hz (flat=5 Hz)
 - 10g Peak stress for domed = 250 psi (flat=11000 psi)

Analysis Results (Cont.)

- Mirror Segment and Bracket
 - 2" core with .06" face sheets provides very stiff structure
 - FF = 61 Hz (rigidly held at 3 bracket attach points)
 - Bracket design is more challenging
 - Difficult to get FF much above 20 Hz
 - 15 G stresses generally low
 - Peak in mirror-to-bracket connectors

Maximum Stresses (in PSI) due to 15 G Gravity Loading			
Component	15G X	15G Y	15G Z
Mirror Segment	950.	1120.	795.
Bracket	7500.	7740.	6460.
Mount Flexures	8470.	20900.	11000.

Mode 1 - 20.7 Hz

Analysis Results (Cont.)

p8

- Detector Support Tubes
 - Buckling not an issue
 - Critical buckling load >>20 G's
 - Tubes optimized to keep
 - Difficult to keep frequency above 20 Hz and weight reasonable without increasing strut diameter.

- Corrector Plate
 - Analysis needs to be done on segmented dome design
- Mirror Segments and Bracket
 - Fundamental frequency of mirror segments may be too low to survive launch environment
 - Bracket needs more optimization
 - May be necessary to tie mirror segments together for launch to provide additional stiffness
 - Thermal distortion analysis may indicate possible use of higher CTE materials for bracket (rather than composites)
- Detector Plate Support Structure
 - Strut geometry far from optimum
 - Frequency rather low
 - May require larger diameter struts
 - Increased obscuration
 - Is 1000 lbs support weight correct?

Issues and Future Analyses (Cont.)

p10

- Additional work to be done
 - S/C interface structure needs to be designed and analyzed
 - Detailed modeling of detector plate assembly and corrector plate support structure
 - Modeling of cover and cover mechanism
 - Overall systems analysis
 - Dynamics of instrument in launch and on-orbit configurations
 - Are mirror ties or other redundant restraints necessary to hold mirror segments for launch?
 - Thermal distortion analysis
 - May help determine whether aggressively low CTE materials are really necessary
 - Detailed stress analysis
 - May be certain areas (such as detector support structure)
 that will be stress driven and need detailed analyses

